Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.889
Filtrar
1.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587075

RESUMO

Inflammatory lymphangiogenesis is intimately linked to immune regulation and tissue homeostasis. However, current evidence has suggested that classic lymphatic vessels are physiologically absent in intraocular structures. Here, we show that neolymphatic vessels were induced in the iris after corneal alkali injury (CAI) in a VEGFR3-dependent manner. Cre-loxP-based lineage tracing revealed that these lymphatic endothelial cells (LECs) originate from existing Prox1+ lymphatic vessels. Notably, the ablation of iridial lymphangiogenesis via conditional deletion of VEGFR3 alleviated the ocular inflammatory response and pathological T cell infiltration. Our findings demonstrate that iridial neolymphatics actively participate in pathological immune responses following injury and suggest intraocular lymphangiogenesis as a valuable therapeutic target for the treatment of ocular inflammation.


Assuntos
Lesões da Córnea , Linfangiogênese , Humanos , Linfangiogênese/fisiologia , Células Endoteliais , Álcalis , Linfócitos T , Inflamação , Iris
2.
BMC Cancer ; 24(1): 409, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566057

RESUMO

BACKGROUND: Accurate evaluation of axillary lymph node metastasis (LNM) in breast cancer is very important. A large number of hyperplastic and dilated lymphangiogenesis cases can usually be found in the pericancerous tissue of breast cancer to promote the occurrence of tumor metastasis.Shear wave elastography (SWE) can be used as an important means for evaluating pericancerous stiffness. We determined the stiffness of the pericancerous by SWE to diagnose LNM and lymphangiogenesis in invasive breast cancer (IBC). METHODS: Patients with clinical T1-T2 stage IBC who received surgical treatment in our hospital from June 2020 to December 2020 were retrospectively enrolled. A total of 299 patients were eventually included in the preliminary study, which included an investigation of clinicopathological features, ultrasonic characteristics, and SWE parameters. Multivariable logistic regression analysis was used to establish diagnostic model and evaluated its diagnostic performance of LNM. The correlation among SWE values, collagen volume fraction (CVF), and microlymphatic density (MLD) in primary breast cancer lesions was analyzed in another 97 patients. RESULTS: The logistic regression model is Logit(P)=-1.878 + 0.992*LVI-2.010*posterior feature enhancement + 1.230*posterior feature shadowing + 0.102*posterior feature combined pattern + 0.009*Emax. The optimum cutoff value of the logistic regression model was 0.365, and the AUC (95% CI) was 0.697 (0.636-0.758); the sensitivity (70.7 vs. 54.3), positive predictive value (PPV) (54.0 vs. 50.8), negative predictive value (NPV) (76.9 vs. 69.7), and accuracy (65.2 vs. 61.9) were all higher than Emax. There was no correlation between the SWE parameters and MLD in primary breast cancer lesions. CONCLUSIONS: The logistic regression model can help us to determine LNM, thus providing more imaging basis for the selection of preoperative treatment. The SWE parameter of the primary breast cancer lesion cannot reflect the peritumoral lymphangiogenesis, and we still need to find a new ultrasonic imaging method.


Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Linfangiogênese , Metástase Linfática/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Estudos Retrospectivos
3.
Cell Commun Signal ; 22(1): 201, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566083

RESUMO

Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Vasos Linfáticos , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Metástase Linfática/patologia , Linfangiogênese/fisiologia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Microambiente Tumoral
4.
Front Immunol ; 15: 1382971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638427

RESUMO

Previous studies have demonstrated an association between lymphatic vessels and diseases caused by bacterial infections. Listeria monocytogenes (LM) bacterial infection can affect multiple organs, including the intestine, brain, liver and spleen, which can be fatal. However, the impacts of LM infection on morphological and functional changes of lymphatic vessels remain unexplored. In this study, we found that LM infection not only induces meningeal and mesenteric lymphangiogenesis in mice, but also impairs meningeal lymphatic vessels (MLVs)-mediated macromolecules drainage. Interestingly, we found that the genes associated with lymphatic vessel development and function, such as Gata2 and Foxc2, were downregulated, suggesting that LM infection may affect cellular polarization and valve development. On the other hand, photodynamic ablation of MLVs exacerbated inflammation and bacterial load in the brain of mice with LM infection. Overall, our findings indicate that LM infection induces lymphangiogenesis and may affect cell polarization, cavity formation, and valve development during lymphangiogenesis, ultimately impairing MLVs drainage.


Assuntos
Listeria monocytogenes , Listeriose , Vasos Linfáticos , Animais , Camundongos , Listeriose/microbiologia , Linfangiogênese , Meninges
5.
Front Immunol ; 15: 1354339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638428

RESUMO

Background: Lymphangiogenesis (LYM) has an important role in tumor progression and is strongly associated with tumor metastasis. However, the clinical application of LYM has not progressed as expected. The potential value of LYM needs to be further developed in lung adenocarcinoma (LUAD) patients. Methods: The Sequencing data and clinical characteristics of LUAD patients were downloaded from The Cancer Genome Atlas and GEO databases. Multiple machine learning algorithms were used to screen feature genes and develop the LYM index. Immune cell infiltration, immune checkpoint expression, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and drug sensitivity analysis were used to explore the correlation of LYM index with immune profile and anti-tumor therapy. Results: We screened four lymphangiogenic feature genes (PECAM1, TIMP1, CXCL5 and PDGFB) to construct LYM index based on multiple machine learning algorithms. We divided LUAD patients into the high LYM index group and the low LYM index group based on the median LYM index. LYM index is a risk factor for the prognosis of LUAD patients. In addition, there was a significant difference in immune profile between high LYM index and low LYM index groups. LUAD patients in the low LYM index group seemed to benefit more from immunotherapy based on the results of TIDE algorithm. Conclusion: Overall, we confirmed that the LYM index is a prognostic risk factor and a valuable predictor of immunotherapy response in LUAD patients, which provides new evidence for the potential application of LYM.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Linfangiogênese , Adenocarcinoma de Pulmão/terapia , Genes Reguladores , Imunoterapia , Neoplasias Pulmonares/terapia
6.
Front Immunol ; 15: 1349500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464522

RESUMO

Lymphatic vessels have been increasingly appreciated in the context of immunology not only as passive conduits for immune and cancer cell transport but also as key in local tissue immunomodulation. Targeting lymphatic vessel growth and potential immune regulation often takes advantage of vascular endothelial growth factor receptor-3 (VEGFR-3) signaling to manipulate lymphatic biology. A receptor tyrosine kinase, VEGFR-3, is highly expressed on lymphatic endothelial cells, and its signaling is key in lymphatic growth, development, and survival and, as a result, often considered to be "lymphatic-specific" in adults. A subset of immune cells, notably of the monocyte-derived lineage, have been identified to express VEGFR-3 in tissues from the lung to the gut and in conditions as varied as cancer and chronic kidney disease. These VEGFR-3+ macrophages are highly chemotactic toward the VEGFR-3 ligands VEGF-C and VEGF-D. VEGFR-3 signaling has also been implicated in dictating the plasticity of these cells from pro-inflammatory to anti-inflammatory phenotypes. Conversely, expression may potentially be transient during monocyte differentiation with unknown effects. Macrophages play critically important and varied roles in the onset and resolution of inflammation, tissue remodeling, and vasculogenesis: targeting lymphatic vessel growth and immunomodulation by manipulating VEGFR-3 signaling may thus impact macrophage biology and their impact on disease pathogenesis. This mini review highlights the studies and pathologies in which VEGFR-3+ macrophages have been specifically identified, as well as the activity and polarization changes that macrophage VEGFR-3 signaling may elicit, and affords some conclusions as to the importance of macrophage VEGFR-3 signaling in disease.


Assuntos
Linfangiogênese , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linfangiogênese/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Macrófagos/metabolismo
7.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474100

RESUMO

The lymphatic kidney system plays a crucial role in managing interstitial fluid removal, regulating fluid balance, and tuning immune response. It also assists in the reabsorption of proteins, electrolytes, cytokines, growth factors, and immune cells. Pathological conditions, including tissue damage, excessive interstitial fluid, high blood glucose levels, and inflammation, can initiate lymphangiogenesis-the formation of new lymphatic vessels. This process is associated with various kidney diseases, including polycystic kidney disease, hypertension, ultrafiltration challenges, and complications post-organ transplantation. Although lymphangiogenesis has beneficial effects in removing excess fluid and immune cells, it may also contribute to inflammation and fibrosis within the kidneys. In this review, we aim to discuss the biology of the lymphatic system, from its development and function to its response to disease stimuli, with an emphasis on renal pathophysiology. Furthermore, we explore how innovative treatments targeting the lymphatic system could potentially enhance the management of kidney diseases.


Assuntos
Nefropatias , Nefrite , Humanos , Linfangiogênese , Rim/patologia , Nefrite/patologia , Sistema Linfático/patologia , Inflamação/patologia , Nefropatias/patologia , Fibrose
8.
Theranostics ; 14(5): 1886-1908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505621

RESUMO

Rationale: Lymphangiogenesis plays a critical role in the transplanted heart. The remodeling of lymphatics in the transplanted heart and the source of newly formed lymphatic vessels are still controversial, especially the mechanism of lymphangiogenesis remains limited. Methods: Heart transplantation was performed among BALB/c, C57BL/6J, Cag-Cre, Lyve1-CreERT2;Rosa26-tdTomato and Postn(2A-CreERT2-wpre-pA)1;Rosa26-DTA mice. scRNA-seq, Elisa assay, Western blotting, Q-PCR and immunohistochemical staining were used to identify the cells and cell-cell communications of allograft heart. Cell depletion was applied to in vivo and in vitro experiments. Whole-mount staining and three-dimensional reconstruction depicted the cell distribution within transparent transplanted heart. Results: Genetic lineage tracing mice and scRNA-seq analysis have revealed that these newly formed lymphatic vessels mainly originate from recipient LYVE1+ cells. It was found that LECs primarily interact with activated fibroblasts. Inhibition of lymphatic vessel formation using a VEGFR3 inhibitor resulted in a decreased survival time of transplanted hearts. Furthermore, when activated fibroblasts were ablated in transplanted hearts, there was a significant suppression of lymphatic vessel generation, leading to earlier graft failure. Additional investigations have shown that activated fibroblasts promote tube formation of LECs primarily through the activation of various signaling pathways, including VEGFD/VEGFR3, MDK/NCL, and SEMA3C/NRP2. Interestingly, knockdown of VEGFD and MDK in activated fibroblasts impaired cardiac lymphangiogenesis after heart transplantation. Conclusions: Our study indicates that cardiac lymphangiogenesis primarily originates from recipient cells, and activated fibroblasts play a crucial role in facilitating the generation of lymphatic vessels after heart transplantation. These findings provide valuable insights into potential therapeutic targets for enhancing graft survival.


Assuntos
Linfangiogênese , Vasos Linfáticos , 60598 , Camundongos , Animais , Camundongos Endogâmicos C57BL , Coração
9.
Cancer Lett ; 587: 216709, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350547

RESUMO

Patients diagnosed with lymph node (LN) metastatic liver cancer face an exceedingly grim prognosis. In-depth analysis of LN metastatic patients' characteristics and tumor cells' interactions with human lymphatic endothelial cells (HLECs), can provide important biological and therapeutic insights. Here we identify at the single-cell level that S100A6 expression differs between primary tumor and their LN metastasis. Of particular significance, we uncovered the disparity in S100A6 expression between tumors and normal tissues is greater in intrahepatic cholangiocarcinoma (ICC) patients, frequently accompanied by LN metastases, than that in hepatocellular carcinoma (HCC), with rare occurrence of LN metastasis. Furthermore, in the infrequent instances of LN metastasis in HCC, heightened S100A6 expression was observed, suggesting a critical role of S100A6 in the process of LN metastasis. Subsequent experiments further uncovered that S100A6 secreted from tumor cells promotes lymphangiogenesis by upregulating the expression and secretion of vascular endothelial growth factor-D (VEGF-D) in HLECs through the RAGE/NF-kB/VEGF-D pathway while overexpression of S100A6 in tumor cells also augmented their migration and invasion. Taken together, these data reveal the dual effects of S100A6 in promoting LN metastasis in liver cancer, thus highlighting its potential as a promising therapeutic target.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Fator D de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/farmacologia , Metástase Linfática , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , NF-kappa B/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/farmacologia , Proteínas de Ciclo Celular/metabolismo
10.
J Nanobiotechnology ; 22(1): 60, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347587

RESUMO

Mesenchymal stem cells/stromal cells (MSCs)-derived extracellular vesicles (EVs) mediate pro-regenerative effects in damaged ischemic tissues by regulating angiogenesis. MSCs-EVs modulate functions of cells including endogenous mature cells, progenitors and stem cells, resulting in restoration of blood flow. However, the mechanisms underlying such MSC-EV activity still remain poorly understood. The present study analyzes biological effects of bone marrow (BM) MSC-EVs on endothelial cells (ECs) in ischemic tissues both in in vitro and in vivo conditions and elucidates the molecular mechanisms underlying the tissue repair. MSC-EVs were isolated from murine BM-derived MSCs and their morphological, antigenic and molecular composition regarding protein and microRNA levels were evaluated to examine their properties. Global proteomic analysis demonstrated the presence in MSC-EVs of proteins regulating pro-regenerative pathways, including integrin α5 (Itgα5) and neuropilin-1 (NRP1) involved in lymphangiogenesis. MSC-EVs were also enriched in microRNAs regulating angiogenesis, TGF-ß signaling and processes guiding cellular adhesion and interactions with extracellular matrix. The functional effects of MSC-EVs on capillary ECs in vitro included the increase of capillary-like tube formation and cytoprotection under normal and inflammatory conditions by inhibiting apoptosis. Notably, MSC-EVs enhanced also capillary-like tube formation of lymphatic ECs, which may be regulated by Itgα5 and NRP1. Moreover, in a mouse model of critical hind limb ischemia, MSC-EVs increased the recovery of blood flow in ischemic muscle tissue, which was accompanied with increased vascular density in vivo. This pro-angiogenic effect was associated with an increase in nitric oxide (NO) production via endothelial NO-synthase activation in ischemic muscles. Interestingly, MSC-EVs enhanced lymphangiogenesis, which has never been reported before. The study provides evidence on pro-angiogenic and novel pro-lymphangiogenic role of MSC-EVs on ECs in ischemic tissue mediated by their protein and miRNA molecular cargos. The results highlight Itgα5 and NRP1 carried by MSC-EVs as potential therapeutic targets to boost lymphangiogenesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neuropilina-1/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Proteômica , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo
11.
Dev Cell ; 59(3): 293-294, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320483

RESUMO

In developing embryos, downregulation of lymphatic endothelial proliferation is needed for maturation of lymphatic vessels into a hierarchical network. In this issue of Developmental Cell, Carlantoni discover that phosphodiesterase2A controls lymphatic endothelial growth arrest and maturation via regulation of cGMP, p38 MAP kinase, and Notch pathway.


Assuntos
Vasos Linfáticos , Diester Fosfórico Hidrolases , Diester Fosfórico Hidrolases/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Endotélio Linfático/metabolismo
13.
Adv Biol (Weinh) ; 8(4): e2400031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400704

RESUMO

Despite the crucial role of lymphangiogenesis during development and in several diseases with implications for tissue regeneration, immunity, and cancer, there are significantly fewer tools to understand this process relative to angiogenesis. While there has been a major surge in modeling angiogenesis with microphysiological systems, they have not been rigorously optimized or standardized to enable the recreation of the dynamics of lymphangiogenesis. Here, a Lymphangiogenesis-Chip (L-Chip) is engineered, within which new sprouts form and mature depending upon the imposition of interstitial flow, growth factor gradients, and pre-conditioning of endothelial cells with growth factors. The L-Chip reveals the independent and combinatorial effects of these mechanical and biochemical determinants of lymphangiogenesis, thus ultimately resulting in sprouts emerging from a parent vessel and maturing into tubular structures up to 1 mm in length within 4 days, exceeding prior art. Further, when the constitution of the pre-conditioning cocktail and the growth factor cocktail used to initiate and promote lymphangiogenesis are dissected, it is found that endocan (ESM-1) results in more dominant lymphangiogenesis relative to angiogenesis. Therefore, The L-Chip provides a foundation for standardizing the microfluidics assays specific to lymphangiogenesis and for accelerating its basic and translational science at par with angiogenesis.


Assuntos
Linfangiogênese , Neoplasias , Humanos , Linfangiogênese/fisiologia , Líquido Extracelular , Células Endoteliais/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia
14.
Tissue Cell ; 87: 102314, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309204

RESUMO

Lymphatic metastasis is a common metastasis of lung adenocarcinoma (LUAD). The current study illustrated the action of lncRNA NKX2-1-AS1 in lymphangiogenesis in LUAD and the underlying mechanisms. Clinical tissue samples were collected for determining NKX2-1-AS1 expression. Then, H441 and H661 cells were selected to perform gain- and loss-of-function assays for dissecting the roles of NKX2-1-AS1 in LUAD cell proliferation and migration. Besides, H441 and H661 cell supernatant was harvested to stimulate HLECs for assessing tube formation ability. Interaction among NKX2-1-AS1, ERG, and fatty acid binding protein 4 (FABP4) was validated through luciferase and RIP assays. NKX2-1-AS1 was highly-expressed in LUAD tissues. Silencing NKX2-1-AS1 suppressed H441 and H661 cell proliferation and migration, reduced expression levels of lymphangiogenesis-related factors (LYVE-1, VEGF-C, VEGFR3, VEGF-A, VEGFR2, and CCR7), and inhibited HLEC tube formation. Interaction validation demonstrated that NKX2-1-AS1 regulated FABP4 transcription by binding to ERG. Overexpression of FABP4 could effectively block the inhibition role of NKX2-1-AS1 silencing in lymphangiogenesis in H441 and H661 cells. This study provided evidence that NKX2-1-AS1 regulated FABP4 transcription by binding to ERG to facilitate the proliferation and migration of LUAD cells and tube formation of HLECs, thus participating in lymphangiogenesis.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Adenocarcinoma/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação Neoplásica da Expressão Gênica , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfangiogênese/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
15.
Int J Mol Med ; 53(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38391009

RESUMO

Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Vasos Linfáticos , Humanos , Linfangiogênese/fisiologia , Doenças Cardiovasculares/metabolismo , Vasos Linfáticos/metabolismo , Cardiopatias/metabolismo , Coração
16.
BMC Biol ; 22(1): 51, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414014

RESUMO

BACKGROUND: Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS: We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS: Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.


Assuntos
Vasos Linfáticos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoesqueleto/metabolismo
17.
Cancer Commun (Lond) ; 44(3): 361-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407929

RESUMO

BACKGROUND: Lymphatic metastasis is one of the most common metastatic routes and indicates a poor prognosis in clear-cell renal cell carcinoma (ccRCC). N-acetyltransferase 10 (NAT10) is known to catalyze N4-acetylcytidine (ac4C) modification of mRNA and participate in many cellular processes. However, its role in the lymphangiogenic process of ccRCC has not been reported. This study aimed to elucidate the role of NAT10 in ccRCC lymphangiogenesis, providing valuable insights into potential therapeutic targets for intervention. METHODS: ac4C modification and NAT10 expression levels in ccRCC were assessed using public databases and clinical samples. Functional investigations involved manipulating NAT10 expression in cellular and mouse models to study its role in ccRCC. Mechanistic insights were gained through a combination of RNA sequencing, mass spectrometry, co-immunoprecipitation, RNA immunoprecipitation, immunofluorescence, and site-specific mutation analyses. RESULTS: We found that ac4C modification and NAT10 expression levels increased in ccRCC. NAT10 promoted tumor progression and lymphangiogenesis of ccRCC by enhancing the nuclear import of Yes1-associated transcriptional regulator (YAP1). Subsequently, we identified ankyrin repeat and zinc finger peptidyl tRNA hydrolase 1 (ANKZF1) as the functional target of NAT10, and its upregulation in ccRCC was caused by NAT10-mediated ac4C modification. Mechanistic analyses demonstrated that ANKZF1 interacted with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) to competitively inhibit cytoplasmic retention of YAP1, leading to transcriptional activation of pro-lymphangiogenic factors. CONCLUSIONS: These results suggested a pro-cancer role of NAT10-mediated acetylation in ccRCC and identified the NAT10/ANKZF1/YAP1 axis as an under-reported pathway involving tumor progression and lymphangiogenesis in ccRCC.


Assuntos
Proteínas 14-3-3 , Carcinoma de Células Renais , Proteínas de Transporte , Neoplasias Renais , Acetiltransferases N-Terminal , Proteínas de Sinalização YAP , Animais , Camundongos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Linfangiogênese/genética , Processos Neoplásicos , Proteínas de Transporte/metabolismo , Acetiltransferases N-Terminal/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas de Sinalização YAP/metabolismo
18.
Cancer Lett ; 584: 216609, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211648

RESUMO

Cervical cancer (CC) patients with lymph node metastasis (LNM) have a poor prognosis. However, the molecular mechanism of LNM in CC is unclear, and there is no effective clinical treatment. Here, we found that 7-dehydrocholesterol reductase (DHCR7), an enzyme that catalyzes the last step of cholesterol synthesis, was upregulated in CC and closely related to LNM. Gain-of-function and loss-of-function experiments proved that DHCR7 promoted the invasion ability of CC cells and lymphangiogenesis in vitro and induced LNM in vivo. The LNM-promoting effect of DHCR7 was partly mediated by upregulating KN motif and ankyrin repeat domains 4 (KANK4) expression and subsequently activating the PI3K/AKT signaling pathway. Alternatively, DHCR7 promoted the secretion of vascular endothelial growth factor-C (VEGF-C), and thereby lymphangiogenesis. Interestingly, cholesterol reprogramming was needed for the DHCR7-mediated promotion of activation of the KANK4/PI3K/AKT axis, VEGF-C secretion, and subsequent LNM. Importantly, treatment with the DHCR7 inhibitors AY9944 and tamoxifen (TAM) significantly inhibited LNM of CC, suggesting the clinical application potential of DHCR7 inhibitors in CC. Collectively, our results uncover a novel molecular mechanism of LNM in CC and identify DHCR7 as a new potential therapeutic target.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Colesterol/metabolismo , Linfangiogênese , Metástase Linfática , Oxirredutases , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/patologia , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
19.
Theranostics ; 14(1): 265-282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164153

RESUMO

Lymphatic vessel networks are a main part of the vertebrate cardiovascular system, which participate in various physiological and pathological processes via regulation of fluid transport and immunosurveillance. Targeting lymphatic vessels has become a potent strategy for treating various human diseases. The presence of varying degrees of inflammation in joints of rheumatoid arthritis (RA) and osteoarthritis (OA), characterized by heightened infiltration of inflammatory cells, increased levels of inflammatory factors, and activation of inflammatory signaling pathways, significantly contributes to the disruption of cartilage and bone homeostasis in arthritic conditions. Increasing evidence has demonstrated the pivotal role of lymphatic vessels in maintaining joint homeostasis, with their pathological alterations closely associated with the initiation and progression of inflammatory joint diseases. In this review, we provide a comprehensive overview of the evolving knowledge regarding the structural and functional aspects of lymphatic vessels in the pathogenesis of RA and OA. In addition, we summarized the potential regulatory mechanisms underlying the modulation of lymphatic function in maintaining joint homeostasis during inflammatory conditions, and further discuss the distinctions between RA and OA. Moreover, we describe therapeutic strategies for inflammatory arthritis based on lymphatic vessels, including the promotion of lymphangiogenesis, restoration of proper lymphatic vessel function through anti-inflammatory approaches, enhancement of lymphatic contractility and drainage, and alleviation of congestion within the lymphatic system through the elimination of inflammatory cells. At last, we envisage potential research perspectives and strategies to target lymphatic vessels in treating these inflammatory joint diseases.


Assuntos
Artrite Reumatoide , Vasos Linfáticos , Osteoartrite , Humanos , Artrite Reumatoide/patologia , Osteoartrite/metabolismo , Vasos Linfáticos/metabolismo , Inflamação/metabolismo , Linfangiogênese
20.
Cell Commun Signal ; 22(1): 67, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273312

RESUMO

Lymphatic system distributes in almost all vertebrate tissues and organs, and plays important roles in the regulation of body fluid balance, lipid absorption and immune monitoring. Although CuNPs or AgNPs accumulation has been reported to be closely associated with delayed hatching and motor dysfunction in zebrafish embryos, their biological effects on lymphangiogenesis remain unknown. In this study, thoracic duct was observed to be partially absent in both CuNPs and AgNPs stressed zebrafish larvae. Specifically, CuNPs stress induced hypermethylation of E2F7/8 binding sites on CCBE1 promoters via their producing ROS, thereby leading to the reduction of binding enrichment of E2F7/8 on CCBE1 promoter and its subsequently reduced expression, then resulting in defective lymphatic vessel formation. Differently, AgNPs stress induced down-regulated CCBE1 expression via down-regulating mRNA and protein levels of E2F7/8 transcription factors, thereby resulting in defective lymphatic vessel formation. This study may be the first to demonstrate that CuNPs and AgNPs damaged lymphangiogenesis during zebrafish embryogenesis, mechanistically, CuNPs epigenetically regulated the expression of lymphangiogenesis regulator CCBE1 via hypermethylating its promoter binding sites of E2F7/8, while AgNPs via regulating E2F7/8 expression. Meanwhile, overexpression of ccbe1 mRNA effectively rescued the lymphangiogenesis defects in both AgNPs and CuNPs stressed larvae, while overexpression of e2f7/8 mRNA effectively rescued the lymphangiogenesis defects in AgNPs rather than CuNPs stressed larvae. The results in this study will shed some light on the safety assessment of nanomaterials applied in medicine and on the ecological security assessments of nanomaterials. Video Abstract.


Assuntos
Nanopartículas Metálicas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Linfangiogênese/genética , Cobre/química , Prata/farmacologia , Prata/química , Prata/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...